С момента, когда человек начал сознавать самого себя, у него появился вопрос «Почему дети похожи на своих родителей, хотя никогда полностью не копируют их?» В античные времена возникла теория пангенеза, одним из сторонников которой был Аристотель. Согласно ей, семя образуется во всех членах тела, после чего током крови передается в половые органы. Сходство между родителями и потомками объяснялось тем, что семя отражает особенности тех частей тела, в которых оно образовалось. Эта теория господствовала в науке вплоть до XIX века. Ее приверженцем был создатель первой эволюционной теории Жан Батист де Ламарк. Он считал пангенез основным механизмом эволюции, объясняющим наследование потомками всех признаков, приобретенных родителями в течение их жизни.

В середине XIX века немецкий зоолог Август Вейсман сформулировал теорию зародышевой плазмы. По мнению Вейсамана в организме существует два типа плазмы: зародышевая (половые клетки и клетки, из которых они образуются) и соматическая (все остальные клетки). Зародышевая плазма остается неизменной и передается из поколения в поколение, тогда как соматическая плазма создается зародышевой и служит для ее защиты, а также способствует размножению.

Однако ни одна из этих теорий не давала ответа на вопрос о механизмах и закономерностях наследования признаков. Основные законы наследования были открыты монахом августинского монастыря города Брюнне (современный Брно) Грегором Иоганном Менделем. С 1856 по 1866 гг. он проводил опыты с огородным горохом (Pisum sativum ), пытаясь узнать, как передаются по наследству его признаки. Опыты Менделя до сих пор являются образцом постановки научного исследования.

Надо сказать, что задолго до Менделя многие ученые пытались понять смысл и механизм наследования признаков у живых организмов. Для этого они скрещивали как растения, так и животных, после чего оценивали сходство родителей и потомков. Однако из полученных результатов нельзя было вывести никаких закономерностей. Дело в том, что одни признаки были общими у потомков с одним из родителей, вторые – с другим, третьи оказывались общими с обоими, четвертые проявлялись только у родителей, а пятые – только у потомков.

Мендель впервые осознал, что все внимание необходимо сконцентрировать на каком то одном признаке, по которому организмы родителей четко различаются между собой. Именно поэтому он выбрал в качестве объекта исследований огородный горох, поскольку существовало огромное количество его сортов. От семеноводов Европы Мендель получил семена различных сортов. После чего из всего многообразия он отобрал сорта, четко различающиеся по одному признаку.

Однако прежде чем скрещивать растения между собой, Мендель в течение двух лет разводил каждый сорт по отдельности, чтобы убедиться в том, что выбранный им признак постоянно наследуется из поколения в поколение. В сущности, Мендель вывел чистые линии сортов гороха, с которыми ему предстояло работать.

Еще одной из важных особенностей опытов Менделя был строгий количественный подход. В каждом новом опыте он подсчитывал число потомков разного типа, пытаясь понять, с одинаковой ли частотой воспроизводятся носители того или иного признака из каждой пары.

Наконец, Мендель очень грамотно поставил эксперимент по скрещиванию. Известно, что горох является самоопыляемым растением. Для того чтобы провести перекрестное опыление, Мендель раскрывал бутоны и удалял тычинки с не созревшей пыльцой. После этого он опылял эти цветки пыльцой другого растения.

Оказалось, что у всех потомков горошины в стручках были желтыми, вне зависимости от того, материнское или отцовское растение было с такими же желтыми горошинами. Противоположный признак – зеленая окраска горошин, у потомков первого поколения не проявлялся. Т. о., все гибриды первого поколения оказываются единообразными.

Мендель установил, что таким образом ведут себя все 7 пар выбранных им признаков – в первом поколении потомков проявляется только один из двух альтернативных. Такие признаки Мендель назвал доминантными, а противоположные им – рецессивными.

Выращивая растения из полученных гибридных семян, Мендель допускал их самоопыление. Оказалось, что во втором поколении потомков встречались растения как с желтыми, так и с зелеными семенами. Более того, горошины разной окраски нередко встречались в одном «стручке». Мендель подсчитал, что на 6022 желтых горошины приходится 2001 зеленая, что составляет 3: 1 (точнее 3,0095: 1).

Близкие соотношения были получены в опытах с другими признаками. Во втором поколении три четверти растений обладали доминантным признаком и только одна четверть – рецессивным. Таким образом, рецессивный признак вновь проявился через поколение.

F 2 (%)
Доминантные Рецессивные Всего Доминантные Рецессивные
Семена: гладкие или морщинистые Гладкие 5475 1850 7325 74,7 25,3
Семена: желтые или зеленые Желтые 6022 2001 8023 75,1 24,9
Цветки: фиолетовые или белые Фиолетовые 705 224 929 75,9 24,1
Цветки: пазушные или верхушечные Пазушные 651 207 858 75,9 24,1
Бобы: выпуклые или с перетяжками Выпуклые 882 299 1181 74,7 25,3
Бобы: зеленые или желтые Зеленые 428 152 580 73,8 26,2
Стебель: длинный или короткий Длинный 787 277 1064 74,0 26,0
Всего или в среднем 14949 5010 19959 74,9 25,1

Таблица 1. Результаты опытов Г. Менделя по скрещиванию сортов гороха, различающихся по одному признаку

После этого, Мендель проращивал семена гибридных растений второго поколения и давал им возможность самоопыляться. Это позволило ему определить, сохраняются ли признаки потомков второго поколения в дальнейшем или нет. Оказалось, что растения с зелеными семенами разводилась в чистоте, т. е. всегда давали растения с такими же зелеными семенами. А вот растения с желтыми семенами оказались неоднородными. Примерно треть растений с желтыми семенами всегда разводилась в чистоте, т. е. во всех последующих поколениях их потомки имели только желтые семена. В потомстве оставшихся 2/3 растений с желтыми семенами появлялись как желтые, так и зелены горошины, соотношение которых было примерно 3: 1.

Сходные результаты Мендель получил и для других пар признаков. Во всех случаях носители рецессивных признаков из числа гибридов второго поколения разводились в чистоте. Носители доминантных признаков были двух типов: треть из них всегда разводилась в чистоте, тогда как в потомстве оставшихся 2/3 доминантный и рецессивный признаки встречались в соотношении 3: 1.

Объясняя результаты своих опытов, Мендель сделал следующее предположение. Альтернативные признаки определяются некими факторами, которые передаются от родителей к потомкам с гаметами. Каждый фактор существует в двух альтернативных формах, которые и обеспечивают одно из возможных проявлений признака. Тот факт, что в потомстве гибридов первого и последующих поколений встречаются носители обоих родительских признаков, позволил Менделю сделать очень важный вывод: «Два фактора, определяющие альтернативные проявления признака, никоим образом не сливаются друг с другом, а остаются раздельными на протяжении всей жизни особи и при формировании гамет расходятся в разные гаметы». Впоследствии это утверждение получило название закона расщепления Менделя.

Мендель не только блестяще провел свои опыты, но и проверил свои предположения. Для этого он скрещивал гибридные растения первого поколения с рецессивным родительским растением. В результате такого скрещивания растения с доминантным и рецессивным признаком оказались в приблизительно равном соотношении (т. е. 1: 1). Это доказывало справедливость сделанных выводов. Примененный Менделем метод проверки результатов скрещивания широко используется в настоящее время и называется анализирующее скрещивание.

Весной 1865 г. Мендель доложил результаты своих опытов на заседании Брюннского общества естествоиспытателей. Как ни странно, ему не было задано ни одного вопроса, да и сам доклад не вызвал особого интереса. Через год в журнале «Известия общества естественной истории Брюнна» вышла его статья. Однако как и доклад она не вызвала интереса у ученых. Так случилось, что выдающееся открытие было забыто до начала XX века. В 1900 г. независимо друг от друга трое ученых: голландец Гуго де Фриз, немец Карл Корренс и австриец Эрих Чермак проведя собственные опыты, получили те же результаты, что и Мендель. К чести сказать, все трое безоговорочно признали приоритет Менделя в данном открытии.

ВОПРОСЫ И ЗАДАНИЯ ДЛЯ ПОВТОРЕНИЯ

Вопрос 1. Кто был первооткрывателем закономерностей наследования признаков?

Первооткрывателем закономерностей наследования признаков был Грегор Мендель.

Вопрос 2. На каких растениях проводил опыты Г. Мендель?

Г. Мендель очень удачно выбрал объект для своих опытов. Горох легко выращивать в условиях Чехии он размножается несколько раз в год, сорта гороха отличаются друг от друга рядом хорошо различимых признаков, и, наконец, в природе горох самоопыляем, но в эксперименте самоопыление легко предотвратить, и исследователь может опылить растение пыльцой с другого растения.

Вопрос 3. Благодаря каким приёмам Г. Менделю удалось вскрыть законы наследования признаков?

Проводя свои классические опыты, Мендель следовал нескольким правилам. Во-первых, он использовал растения, которые отличались друг от друга малым количеством признаков. Во-вторых, ученый работал только с растениями чистых линий. Так, у растений одной линии семена всегда были зелеными, а у другой - желтыми. Чистые линии Мендель вывел предварительно, путем самоопыления растений гороха.

Мендель ставил опыты одновременно с несколькими родительскими парами гороха; растения каждой пары принадлежали к двум разным чистым линиям. Это позволило ему получить больше экспериментального материала.

При обработке полученных данных Мендель использовал количественные методы, точно подсчитывая, сколько растений с данным признаком (например, семян с желтой и зеленой окраской) появилось в потомстве.

ВОПРОСЫ И ЗАДАНИЯ ДЛЯ ОБСУЖДЕНИЯ

Вопрос 1. Какие особенности растений гороха позволили Г. Менделю отнести организмы, взятые им для гибридизации, к чистым линиям?

Горох легко выращивать в условиях Чехии он размножается несколько раз в год, сорта гороха отличаются друг от друга рядом хорошо различимых признаков, и, наконец, в природе горох самоопыляем, но в эксперименте самоопыление легко предотвратить, и исследователь может опылить растение пыльцой с другого растения.

Вопрос 2. В чём сущность гибридологического метода, разработанного Г. Менделем?

Суть гибридологического метода заключается в скрещивании (гибридизации) организмов, отличающихся друг от друга по одному или нескольким признакам. В основу гибридологического метода Г. Менделя положены следующие приемы и объекты:

1) анализ наследования проводился по отдельным ярко выраженным признакам;

2) изучение характера передачи признаков потомкам первого и последующих поколений;

3) количественный учет распределения наследуемых признаков у особей в гибридных поколениях (статистика);

4) в качестве объекта исследований был выбран горох – растение, у которого возможно и естественное самоопыление и искусственное перекрестное опыление.

Вопрос 1. Дайте определения понятий «наследственность» и «изменчивость».
Наследственность - это способность живых организмов передавать свои признаки, свойства и особенности развития следующему поколению. Она обеспечивает материальную и функциональную преемственность поколений, является причиной того, что новое поколение похоже на предыдущее. В основе наследования признаков лежит передача потомству генетического материала.
Изменчивость - это способность живых организмов существовать в различных формах, т. е. приобретать в процессе индивидуального развития признаки, отличные от качеств других особей того же вида, в том числе и своих родителей. Изменчивость может определяться особенностями генов особи, их сочетанием и т.п., а может - взаимодействием особи и окружающей среды. В последнем случае даже генетически одинаковые организмы способны приобретать в процессе онтогенеза разные признаки и свойства.

Вопрос 2. Кто впервые открыл закономерности наследования признаков?
Первым человеком, который открыл закономерности наследования признаков, был австрийский ученый Грегор Мендель (1822-1884). Будучи монахом монастыря в Брюнне (Брно, современная Чехия), он в течение восьми лет (1856-1863) скрещивал разные сорта гороха. В 1865 г. Г. Мендель на заседании Общества естествоиспытателей г. Брюнна доложил о результатах своих экспериментов. Работа была оценена по достоинству лишь после 1900 г., когда три ботаника (Гуго де Фриз в Голландии, Карл Корренс в Германии и Эрих Чермак в Австрии) независимо друг от друга заново открыли закономерности наследования.

Вопрос 3. На каких растениях проводил опыты Г Мендель?
Мендель проводил опыты на разных сортах посевного гороха. Для своих экспериментов он использовал 22 сорта гороха, отличающихся по семи признакам. Всего за время исследований он изучил более десяти тысяч растений.

Вопрос 4. Благодаря каким особенностям организации работы Г Менделю удалось открыть законы наследования признаков?
Грегору Менделю удалось открыть законы наследования признаков благодаря следующим особенностям своей работы:
экспериментальным растением являлся горох - неприхотливое растение, обладающее большой плодовитостью и дающее несколько урожаев в год;
горох является самоопыляющимся растением, что позволяет избегать случайного попадания посторонней пыльцы. Мендель во время экспериментов по перекрестному опылению удалял тычинки и кисточкой переносил пыльцу одного родительского растения на пестик другого;
Мендель исследовал качественные, четко различимые признаки, каждый из которых контролировался одним геном;
при обработке данных ученый вел строгий количественный учет всех растений и семян.

Грегор Мендель, горох и теория вероятностей

Фундаментальная работа Грегора Менделя, посвященная наследованию признаков у растений «Опыты над растительными гибридами», увидела свет в 1865 г., но фактически осталась незамеченной. Его труд был оценен биологами только в начале XX в., когда законы Менделя были переоткрыты. Выводы Менделя не оказали влияния на развитие современной ему науки: эволюционисты не использовали их в построениях своих теорий. Почему же именно Менделя мы считаем основоположником учения о наследственности? Только ли для соблюдения исторической справедливости?

Чтобы разобраться в этом, проследим ход его экспериментов.

Явление наследственности (передачи признаков от родителей потомкам) известно с незапамятных времен. Ни для кого не секрет, что дети похожи на родителей. Знал это и Грегор Мендель. А если дети не похожи на родителей? Ведь известны случаи рождения голубоглазого ребенка от кареглазых родителей! Велик соблазн объяснить это супружеской неверностью, но, например, опыты с искусственным опылением растений показывают, что потомки первого поколения могут быть непохожи ни на одного из родителей. А тут уж точно все честно. Следовательно, признаки потомков не являются просто суммой признаков их родителей. Что же получается? Дети могут быть какими угодно? Тоже нет. Так существует ли вообще какая-нибудь закономерность в наследовании? И можем ли мы предсказать совокупность признаков (фенотип) потомков, зная фенотипы родителей?

Подобные рассуждения и привели Менделя к постановке проблемы исследований. А если поставлена проблема, можно перейти к ее решению. Только как? Каков должен быть метод? Придумать метод – вот с этим Мендель блистательно справился.

Естественное желание ученого при исследовании какого-либо явления – обнаружить закономерность. Мендель решил пронаблюдать интересующее его явление – наследственность – у гороха.

Надо сказать, что горох был выбран Менделем не случайно. Вид Pisum sativum L . очень удобен для изучения наследственности. Во-первых, его легко выращивать и весь жизненный цикл проходит быстро. Во-вторых, он склонен к самоопылению, а без самоопыления, как увидим далее, опыты Менделя были бы невозможны.

Но на что, собственно, нужно обращать внимание при наблюдениях, чтобы выявить закономерность и не заблудиться в хаосе данных?

В первую очередь, признак, наследование которого наблюдается, должен четко различаться визуально. Проще всего взять признак, который проявляется в двух вариантах. Мендель выбрал окраску семядолей. Семядоли у семян гороха могут быть либо зеленые, либо желтые. Такие проявления признака хорошо различимы и четко делят все семена на две группы.

Опыты Менделя: а – желтые и зеленые семена гороха; б – гладкие и морщинистые семена гороха

Кроме того, нужно быть уверенным, что наблюдаемая картина наследования является следствием скрещивания растений с разными проявлениями выбранного признака, а не вызвана какими-то другими обстоятельствами (откуда, строго говоря, он мог знать, что цвет семядолей не зависит, например, от температуры, при которой горох рос?). Как этого добиться?

Мендель вырастил две линии гороха, в одной из которых появлялись только зеленые семена, а в другой – только желтые. Причем на протяжении многих поколений в этих линиях картина наследования не изменялась. В таких случаях (когда в ряде поколений отсутствует изменчивость) говорят, что использована чистая линия.

Растения гороха, на которых ставил опыты Г.Мендель

Всех факторов, влияющих на наследственность, Мендель не знал, поэтому сделал нестандартный логический ход. Он изучил, какие результаты дает скрещивание между собой растений с семядолями одного цвета (в данном случае потомки – точная копия родителей). После этого он провел скрещивание растений с семядолями разных цветов (у одного – зеленые, у другого – желтые), но в тех же условиях. Это дало ему основания утверждать, что различия, которые проявятся в картине наследования, вызваны различными фенотипами родителей при этих двух скрещиваниях, а не каким-либо другим фактором.

Вот какие результаты получил Мендель.

У потомков первого поколения от скрещивания растений с желтыми и зелеными семядолями наблюдалось только одно из двух альтернативных проявлений признака – все семена получились с зелеными семядолями. Такое проявление признака, когда наблюдается преимущественно один из вариантов, Мендель назвал доминантным (альтернативное проявление, соответственно, рецессивным), а результат этот получил название закона единообразия гибридов первого поколения , или первого закона Менделя .

Во втором поколении, полученном с помощью самоопыления, появились семена как с зелеными, так и с желтыми семядолями, причем в соотношении 3:1.
Это соотношение носит название закона расщепления , или второго закона Менделя .
Но эксперимент не кончается получением результатов. Существует еще такой важный этап, как их интерпретация, т. е. осмысление полученных результатов с точки зрения уже накопленных знаний.

Что же знал о механизмах наследования Мендель? Да ничего. Во времена Менделя (середина XIX в.) еще не знали никаких генов и хромосом. Даже идея о клеточном строении всего живого не была еще общепризнанной. Например, многие ученые (в том числе и Дарвин) считали, что наследуемые проявления признаков составляют непрерывный ряд. Это значит, например, что при скрещивании красного мака с желтым потомство должно быть оранжевым.

Мендель в принципе не мог знать биологической природы наследования. Что же дали его опыты? На качественном уровне получается, что потомки действительно бывают какие угодно и никакой закономерности нет. А на количественном? И о чем в данном случае может вообще говорить количественная оценка результатов опыта?

К счастью для науки, Грегор Мендель был не просто любознательным чешским монахом. В юности его очень интересовала физика, он получил хорошее физическое образование. Мендель изучал также и математику, в том числе и начала теории вероятностей, разработанной Блезом Паскалем в середине XVII в. (При чем тут теория вероятностей станет ясно ниже.)

Мемориальная бронзовая доска, посвященная Г.Менделю, открытая в г. Брно в 1910 г.

Как же интерпретировал свои результаты Мендель? Он вполне логично предположил, что существует некая реальная субстанция (он назвал ее наследственным фактором), определяющая цвет семядолей. Допустим, наличие наследственного фактора А определяет зеленый цвет семядолей, а наличие наследственного фактора а – желтый. Тогда, естественно, растения с зелеными семядолями содержат и передают по наследству фактор А , а с желтыми – фактор а . Но почему же тогда среди потомков растений с зелеными семядолями встречаются растения с желтыми семядолями?
Мендель предположил, что каждое растение несет по паре наследственных факторов, отвечающих за данный признак. Причем при наличии фактора А фактор а уже не проявляется (зеленая окраска доминирует над желтой).
Надо сказать, что после замечательных работ Карла Линнея европейские ученые достаточно хорошо представляли процесс полового размножения у растений. В частности, было понятно, что в дочерний организм переходит что-то от матери, а что-то от отца. Не понятно было только, что и как.
Мендель предположил, что при размножении наследственные факторы материнского и отцовского организмов комбинируются между собой как попало, но таким образом, что в дочерний организм попадает один фактор от отца, а другой от матери. Это, прямо скажем, довольно смелое предположение, и любой скептически настроенный ученый (а ученый обязан быть скептиком), поинтересуется почему, собственно, Мендель построил на этом свою теорию.
Здесь и выходит на авансцену теория вероятностей. Если наследственные факторы комбинируются между собой как попало, т.е. независимо, то одинакова вероятность попадания в дочерний организм каждого фактора от матери или от отца?
Соответственно, по теореме умножения, вероятность формирования в дочернем организме конкретной комбинации факторов равна: 1/2 х1/2 = 1/4.
Очевидно, возможны комбинации АА , Аа , аА , аа . С какой же частотой они проявляются? Это зависит от того, в каком соотношении факторы А и а представлены у родителей. Рассмотрим с этих позиций ход опыта.
Сначала Мендель взял две линии гороха. В одной из них желтые семядоли не появлялись ни при каких обстоятельствах. Значит фактор а в ней отсутствовал, и все растения несли комбинацию АА (в случаях, когда организм несет два одинаковых аллеля, он называется гомозиготным ). Точно так же все растения второй линии несли комбинацию аа .
Что же происходит при скрещивании? От одного из родителей с вероятностью 1 приходит фактор А , а от другого с вероятностью 1 – фактор а . Далее они с вероятностью 1х1=1 дают комбинацию Аа (организм, несущий разные аллели одного гена, называется гетерозиготным ). Это отлично объясняет закон единообразия гибридов первого поколения. Все они имеют зеленые семядоли.
При самоопылении от каждого из родителей первого поколения с вероятностью 1/2 (предположительно) приходит либо фактор А , либо фактор а . Это означает, что все комбинации будут равновероятны. Какова же должна быть в данном случае доля потомков с желтыми семядолями? Очевидно, одна четверть. Но это и есть результат опыта Менделя: расщепление по фенотипу 3:1! Следовательно, предположение о равновероятных исходах при самоопылении было верным!
Теория, предложенная Менделем для объяснения явлений наследственности, базируется на строгих математических выкладках и носит фундаментальный характер. Можно даже сказать, что по степени строгости законы Менделя больше похожи на законы математики, чем биологии. Долгое время (да и до сих пор) развитие генетики состояло в проверке приложимости этих законов к тому или иному конкретному случаю.

Задачи

1. У тыквы белая окраска плодов доминирует над желтой.

А. Родительские растения гомозиготны и имели белые и желтые плоды. Какие плоды получатся от скрещивания гибрида первого поколения с его белым родителем? А с желтым родителем?
Б. При скрещивании белой тыквы с желтой получено потомство, половина которого имеет белые плоды, а половина – желтые. Каковы генотипы родителей?
В. Можно ли получить желтые плоды при скрещивании белой тыквы и ее белого потомка из предыдущего вопроса?
Г. Скрещивание белой и желтой тыкв дало только белые плоды. Какое потомство дадут две такие белые тыквы при скрещивании между собой?

2. Черные самки двух разных групп мышей были скрещены с коричневыми самцами. От первой группы было получено 50% черных и 50% коричневых мышат. От второй группы получено 100% черных мышат. Объясните результаты опытов.

3. . Мистер Браун купил у мистера Смита черного быка для своего черного стада. Увы, среди 22 родившихся телят 5 оказались рыжими. Мистер Браун предъявил претензии мистеру Смиту. «Да, мой бык подкачал, – сказал мистер Смит, – но он виноват только наполовину. Половину вины несут Ваши коровы». «Вздор!, – возмутился мистер Браун, – мои коровы ни при чем!» Кто прав в этом споре?

Здесь речь идет о работе Линнея «Sexum Plantarum» («Пол у растений»), посвященной половому размножению растений. Эта работа, изданная в 1760 г., описывала процесс размножения настолько подробно, что долгое время была запрещена в Петербургском университете как безнравственная.